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An aligned sample in the lamellar phase of the sodium dodecylsulphate—decanol-water system is in-
vestigated by orientation-dependent 2*Na NMR spin-relaxation experiments and x-ray diffraction. A
pronounced relaxation anisotropy is observed, implying a nonclassical microstructure where a large frac-
tion of the hydrocarbon-water interface is highly curved. Noting that the bilayer topology is either oil-
continuous, bicontinuous, or water-continuous, we consider three classes of microstructures with curva-
ture defects: a bilayer perforated by aqueous pores, a bilayer with aqueous slits and ribbonlike aggre-
gates, and a bilayer fragmented into discrete discoidal micelles. The seven model-independent NMR ob-
servables impose severe constraints on the allowed microstructures: the discoid geometry can be reject-
ed, while the pore and ribbon geometries are consistent with the data, but only for certain values of the
relative defect dimensions. A simple analysis of the energetics of defect formation, using the deduced de-

fect dimensions, favors the ribbon geometry.

PACS number(s): 61.30.Eb

I. INTRODUCTION

The lyotropic mesomorphism of amphiphile-water
mixtures has been extensively studied over the past 50
years [1-3]. With increasing amphiphile concentration
most systems exhibit the hexagonal—cubic— lamellar
phase progression, sometimes with additional (“inter-
mediate”) phases occurring in the narrow concentration
intervals separating the three classical phases. Until re-
cently it was widely believed that the microstructure of a
given phase, i.e., the geometry of the dividing interface
that separates polar and nonpolar regions, is essentially
invariant to changes in external conditions (temperature,
composition) throughout the existence region of the
phase. During the past decade, however, this traditional
belief has been challenged by new experimental results,
implying a continuous variation of microstructure. Near
the phase boundaries these microstructural variations can
be dramatic, involving changes in local symmetry and to-
pology. Such modifications of the classical microstruc-
ture are commonly referred to as structural defects or, in
the lamellar phase, curvature defects. In contrast to
metastable textural defects [4,5], such as focal conic
domains in the lamellar phase, the structural defect is an
intrinsic feature of the equilibrium microstructure.

Most of the evidence for structural defects comes from
studies of oriented lamellar (L,) phases [6—40], mainly
by small-angle x-ray and neutron scattering, conductivi-
ty, self-diffusion, and NMR spectroscopy. Among the in-
vestigated half-dozen different amphiphile-water systems,
the perfluoro-octanoate (PFO)-water system (usually
with cesium as counterion) is the earliest and most exten-
sively studied [6—24]. For this system there is unambigu-
ous evidence of structural defects in the L, phase and for
a continuous variation of the microstructure across the
(second-order) transition to the neighboring discotic
nematic (Np) phase. While it is clear that the smectic
amphiphile layers contain a substantial amount of water,
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the nature of the defects remains controversial. Similar
results have been obtained for the decylammonium
chloride—water—ammonium-chloride system [25-31],
which also features an L, phase next to an N, phase.
Structural defects in L, phases have also been observed
near the tetragonal phase in the sodium dodecylsulphate
(SDS)—water [32,33] and LiPFO-water [8,17] systems,
near the rectangular phase in the sodium
decylsulphate—water—decanol system [34,35], near the
isotropic microemulsion phase in the
SDS-water—hexane—pentanol system [36] and near the
microemulsion [37-39] and cubic [40] phases in the
nonionic systems C,EO, (rn =5 or 6)-water (C,EO,
stands for n-ethyleneglycol dodecylether).

The quantitative characterization of structural defects
in L, phases poses challenging experimental problems.
While there is ample qualitative evidence for the ex-
istence of defects, there is a striking lack of firm quantita-
tive results on the geometry and density of defects.

Scattering techniques provide a correlation length (as-
sociated with the lateral diffuse scattering), which is a
measure of defect density. (If the defects are ordered, the
symmetry of the local “lattice” can also be deduced.) In-
formation about the size and shape of the defects, howev-
er, can only be derived indirectly in terms of a specific
geometric model.

Techniques that measure transport properties, such as
conductivity and self-diffusion, are valuable as they
reflect the topology of the microstructure, i.e., whether
the bilayers are permeable to water and ions, and whether
they are oil-continuous. To proceed beyond this qualita-
tive topological information and make quantitative
deductions about defect size, shape, and density requires
a geometric model and a detailed analysis accounting for
the dynamic consequences of microscopic interactions.

The two most popular models of structural defects in
L, phases are (i) a bilayer perforated by aqueous pores,
and (ii) discoidal micelles with smectic translational or-
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der. Neither scattering nor conductivity data can readily
distinguish between these alternatives. (Self-diffusion of
species solubilized in the nonpolar environment can in
principle establish whether the bilayer plane is oil-
continuous [20,30].)

Unlike these techniques, NMR [as well as electron-spin
resonance (ESR)] probes the curvature of the interface,
provided that the observed spin resides in a molecule that
is effectively confined to the interface. Since the classical
bilayer has zero curvature, a curvature-probing technique
such as NMR should be useful for identifying and
characterizing structural defects in L, phases. The
orientational correlations that carry the curvature infor-
mation are manifested in the static line shape (and the
line splitting derived therefrom) as well as in the spin-
relaxation behavior. So far, only static line splittings in
NMR [9,13,14,16,19,22,23,26,28,35,40] and ESR [36-38]
have been used to study structural defects in L, phases.
To extract information about structural defects from
such splittings, however, one requires a defect-free refer-
ence sample in which the local properties of the interface
are the same as in the sample with defects. Even if this
requirement could be met, the splitting cannot distin-
guish between intrinsic structural defects and larger-scale
textural defects. Furthermore, only a single defect-
related quantity is obtained, which obviously does not
suffice to determine the size, shape, and density of de-
fects.

In this work we introduce an alternative experimental
approach to the problem of structural defects in L,
phases. We have previously used quadrupolar relaxation
of interfacially confined nuclei (**Na in the counterion
and ?H in the a-deuterated surfactant) to determine mi-
crostructure and interface dynamics in hexagonal
[41-43] and nematic [44,45] phases. For a classical L,
phase, with planar interfaces, the spin relaxation is essen-
tially determined by the local properties of the interface.
Structural defects, by introducing interface curvature,
qualitatively alter the spin-relaxation behavior: the lab-
frame spectral densities (which are linearly related to the
spin-relaxation rates) now depend on the frequency as
well as on the orientation of the (macroscopically aligned)
L, phase. The orientation dependence, whose functional
form is dictated by the point-group symmetry of the
phase [46], provides the key to the fundamental relaxa-
tion observables: the crystal-frame spectral densities.

Crudely speaking, each of the three (in an L, phase)
crystal-frame spectral densities involves an amplitude fac-
tor and a correlation time [47]. The amplitude factors
are determined by the distribution of local interface nor-
mals in the phase and, hence, reflect the interface curva-
ture. Whereas the amplitude factors are invariant under
isometric scaling of the microstructure, the dimensions of
the structural defects can be deduced from the correla-
tion times if the surface diffusion coefficient of the spin-
bearing species is known.

We report here the results and analysis of a 2*Na spin-
relaxation study of the counterions in the L , phase of the
system sodium dodecylsulphate—decanol-water at a
composition close to the previously studied [44,45]
discotic nematic phase. Four independent relaxation
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rates are determined at six different orientations of the
macroscopically aligned L, phase. This allows us to
determine accurately the complete information content
(nine crystal-frame spectral density values) of a fixed-field
spin-relaxation study of an L, phase. The observed
strong frequency and orientation dependence constitute
unambiguous evidence for a nonclassical microstructure
with a large fraction curved interface.

In order to quantitatively characterize the structural
defects we consider three topologically distinct types of
microstructure: (i) a bilayer perforated by pores, (ii) a bi-
layer with line defects, giving rise to ribbonlike aggre-
gates, and (iii) a bilayer fragmented into discrete discoidal
aggregates. A quantitative analysis shows that the
crystal-frame spectral densities are consistent with the
first two types of defect, but only for certain values of the
relative defect dimensions. To discriminate among these
alternatives, we present a simple analysis of the energetics
of defect formation, showing that the ribbon geometry is
the most stable one.

II. EXPERIMENT

A. Materials and phase alignment

SDS (sodium dodecylsulphate) and n-decanol were ob-
tained from BDH Chemicals (“specially pure” grade).
The water was millipore-filtered H,O with 10% D,0 add-
ed to allow the phase alignment to be monitored via the
water 2H NMR spectrum. All 2*Na NMR experiments
were performed at 25.0°C on a sample in the lamellar
(L,) phase of composition 27.30:7.00:65.70 wt.%
SDS:decanol:water, corresponding to molar ratios
n, /ngps =38.12 and ng4. /ngpg=0.467. The L, powder
sample, prepared as in Ref. [42], showed birefringence be-
tween crossed polarizers but was distinctly more fluid
than typical L, samples. After exposure to an 8.5-T
magnetic field for several hours, the water H spectrum
showed no signs of alignment.

At the present composition, the L, phase is stable
from 17°C (where SDS precipitates) to 31°C. In the
range 32-34°C, the L, phase is in equilibrium with a
discotic nematic (N ) phase, and in the range 36-40°C
with an isotropic micellar phase. Figure 1 shows the
relevant part of the ternary phase diagram at 25 °C.

Two methods are available for preparing macroscopi-
cally aligned L, phases: surface-induced alignment be-
tween stacked glass plates, and magnetic-torque align-
ment during a temperature-induced phase transition from
an isotropic or nematic phase. A drawback of the first
method is the small plate spacing ( ~50 pm) required to
get a good alignment; the large fraction glass in the sam-
ple reduces considerably the signal-to-noise ratio. The
main drawback of the second method is that it does not
produce a uniform alignment of the hydrocarbon bi-
layers, but rather a distribution of director orientations in
the plane perpendicular to the magnetic field. In the
present study, these drawbacks were largely avoided by
combining the two methods.

The sample cell used for the relaxation anisotropy mea-
surements is shown in Fig. 2: 18 glass plates of 20-mm
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FIG. 1. Partial phase diagram (wt. %) for the system SDS-
decanol-water (10% D,O in H,0) at 25°C showing the exten-
sion of the one-phase regions of the isotropic micellar solution
phase and the lamellar (L,), hexagonal (H,), and nematic
(N¢,Np) liquid-crystalline phases. (The dashed boundaries
have not been precisely located.) The dot in the L, phase corre-
sponds to the composition of the investigated sample.

height and 120-um thickness were fixed between two cy-
lindrical plastic (Kel-F) spacer plugs (with 150-um-wide
slots every 450 um), yielding a cylindrical glass lattice of
~9-mm diam, 15-mm height, and ~ 330 pum between the
glass plates. The lattice was placed in a 50-mm-long, 10-
mm NMR tube, the L, phase was introduced by slow
centrifugation, and the sample was sealed with a Teflon-
coated, cylindrical rubber plug and Parafilm. No signs of
material loss were detected during the relaxation experi-
ments.

For the alignment, the sample was placed with an 8.5-
T magnetic field along the sample tube axis. At this
stage, the water 2H spectrum resembled a typical three-
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FIG. 2. Cross section of the sample cell used for the relaxa-
tion anisotropy measurements. The orientation 6;. between
the phase director (z¢) and the magnetic field (z, ) was varied by
twisting the cylindrical sample tube around its axis.
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dimensional powder spectrum of a uniaxial phase [48].
By raising the temperature to the two-phase region, with
the L, phase in equilibrium with the isotropic micellar
phase, for ~5 min and then quickly cooling back to
25°C, a uniformly aligned L, phase was obtained. The
water “H spectrum showed two peaks with a splitting
identical to the previous powder splitting. After a 90° ro-
tation of the sample (to 8,-=0° in Fig. 2) the water H
spectrum was dominated by two peaks with a splitting
twice as large as the powder splitting. A small (two-
dimensional) powderlike signal was also seen, which we
attribute to the small fraction of the L, phase that aligns
on the NMR tube. From the geometry of the sample cell,
we estimate that at least 85-90 % of the L, phase is uni-
formly aligned.

B. X-ray diffraction

An x-ray-diffraction experiment was performed on a
powder sample at 25°C. The Bragg reflections were
recorded directly on film in a Kiessig camera, using
monochromatic Cu Ka radiation (A=1.54 A). The
diffraction pattern clearly revealed two lines with Bragg
spacings of 58.4 and 29.4 A, in agreement with the
theoretical prediction 1:1/2 for an L, phase [1]. Averag-
ing the two values, we thus obtain a smectic repeat dis-
tance of d =58.6 A.

C. ?Na spin relaxation

The 2Na experiments were performed on a Bruker
MSL-100 spectrometer (**Na resonance frequency,
26.487 MHz) with a horizontal 10-mm solenoidal probe
and a 2.35-T-wide-bore superconducting magnet. The
magnetic field inhomogeneity was 10-20 Hz (cf. below)
and the temperature stability and gradients in the sample
were less than +0.04°C. Typically the 180° pulse length
was 12 us. All experiments were performed on reso-
nance, i.e., the rf pulse was centered on the central peak
frequency.

The orientation of the phase director was varied by
simply twisting the sample tube around its axis (Fig. 2).
Since the phase is uniaxial and the >*Na satellites narrow
(Fig. 3), the crystal orientation 8, was first estimated by
eye to within =5° or so and then more precisely deter-
mined from the known angular dependence of the quad-
rupole splitting [48]

VQ(GLc)z\/gQO(:; COSZOLC—I) , (2.1)
with the 90° splitting v“’QO determined from a spectrum
with the sample in a vertical probe (with the phase direc-
tor uniformly perpendicular to the magnetic field). The
reference splitting obtained in this way, |vy|=16.14
kHz, agreed well with the 90° and 0° splittings derived
from the singularities of the small powderlike fraction in
the sample (Fig. 3). From the uncertainty in the splitting,
we estimate the uncertainty in the crystal orientation 6,
to be £1° or less. In the relaxation anisotropy experi-
ments 6;. was varied nonmonotonically in order to
detect (and minimize systematic errors due to) any slow
time-dependent changes in the sample (e.g., due to eva-
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FIG. 3. ®»Na NMR F2 spectrum obtained from shortest ¢,
delay in a 2DQE experiment at 6;-=6.8°. The central peak is
truncated at % of its actual height.

poration). However, no such changes were detected.

The two nonadiabatic (high-frequency) lab-frame spec-
tral densities J % (w;,0,¢) and J5 (20,0, ) were deter-
mined from three independent relaxation experiments.
Redundancy was needed to accurately determine the,
sometimes very similar, spectral densities. Due to the
small powderlike fraction in the sample, the central peak
is expected to show multiexponential relaxation and can
therefore not be used for accurate spectral density deter-
minations. Instead, JY (w;,0,¢) and J4 (20, ,0;,c) were
determined from the ?*Na satellites, using the following
three relaxation experiments. These particular experi-
ments were chosen to optimize the accuracy of the deter-
mined spectral densities for a given measurement time
[93].

Conventional inversion recovery (IR), (180°)4-7-(90°),-
acquisition (acq.), yielding a single-exponential recovery
of the satellite intensity according to [49]

Ligeo(T)=a +bexp[ —2J57] . 2.2)

For convenience, the lab-frame spectral densities
JE=JE (kw;,0.c) are defined so as to include spin-
dependent numerical factors and coupling constants.
Modified inversion recovery, (180°)4-7-(35°),-acq., per-
formed as the conventional experiment except for the
detection pulse angle, yielding a biexponential satellite
recovery with maximized amplitude for the exponential

involving J¥ [49],
Iipss(7)=c +d exp[ —2J 5 7]+ fexp[ —2J57] . (2.3)

Quadrupole polarization decay (QPD), using the
Jeener-Broekaert pulse sequence (90°)4-7,-(45%) s p-7-
(45°),-(*+)acq., yielding an exponential decay of the satel-
lite intensities according to [49]

Iqpp(7)=g +h exp[ —2JE+75)r] . (2.4)

The fixed delay time 7, was set to 1/(4vy) in order to
maximize the conversion from dipolar to quadrupolar po-
larization [49].

In all three experiments the acquisition delay was set to
a multiple of 1/v,(6;c) in order to avoid baseline offsets
due to first-order phase corrections. The experiments
were performed with 24 different delay times 7 in the
range 0.5-140 ms for the inversion recoveries and
0.25-70 ms for the quadrupole polarization decay. A
rms satellite peak signal-to-noise ratio of better than 100
was obtained in each experiment with the shortest delay
time. The repetition time between successive accumula-
tions was 140 ms or longer.

A simultaneous least-squares fit [50] of (2.2)-(2.4) to
the 2X3X24 intensities Irog, I1r35, and I gpp yielded the
nine parameters J ’{,J ﬁ‘ ,a,b,...,g at each crystal orien-
tation ;. In all fits the computed rms intensity uncer-
tainty was close to the inverse of the experimental rms
signal-to-noise ratio. The amplitude parameters a-g
were close to their relative theoretical values [49], except
at the largest quadrupole splittings where the 180° pulse
was not perfectly nonselective (cf. below), causing the b,
d, and f coefficients to deviate (by up to 25%) from their
nominal (hard-pulse) values [93]. The deduced lab-frame
spectral densities J| and JZ, the splitting v,, and the in-
homogeneous central (Awvf,;) and satellite (Avj,)
linewidths at half-height are collected in Table I. The
central line always had a Lorentzian shape, whereas the
satellite line shape was a superposition of homogeneous
Lorentzian shapes, as expected for a small spread ( ~ +2°)
in the crystal orientation (Fig. 3). This spread is presum-
ably caused by a variation in the orientation of the glass
plates. No variation in the relaxation rates was observed
at different positions within the satellite peak.

The rf pulses used in the quadrupole polarization ex-
periment to determine the sum J£+J% showed less than
6% attenuation at the satellite positions and, hence, can
be considered nonselective. However, for the 180° pulses

TABLE 1. Orientation dependence of quadrupole splitting, inhomogeneous linewidths, and nonadia-
batic laboratory-frame spectral densities for 2’Na in the L, phase. The experimental random error
(+20) is given for the spectral densities. The random error is estimated to be +5 Hz in v and Av,,

and +5% in Av],.

lvol (kHz) 0.c (deg) AvE, (Hz) Aviy (Hz) JEs™) JE ™
32.03 4.1 50 390 46.2+1.3 28.3+0.4
26.79 19.7 46 500 48.8+1.2 29.1+0.3
12.64 39.6 46 740 51.8+1.0 33.8+0.2
4.23 60.3 45 370 45.6+1.6 40.2+0.4
12.64 74.4 46 420 41.0£1.8 44.0+0.5
16.06 87.7 45 190 39.1+1.8 46.0+0.6
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TABLE II. Orientation dependence of quadrupole splitting,
2DQE linewidths, and adiabatic laboratory-frame spectral den-
sity for 2’Na in the L, phase. The experimental random error
(+20) is 7% for J5. The random error is estimated to be *5
Hzin vy, £1 Hz in Avgg, and +3 Hz in Avig.

lvol (kHz)  6,c (deg) Avge (Hz) Avig (Hz) J (57
31.60 6.8 26.4 88.5 195
27.55 18.2 29.3 91.8 196
14.04 37.9 30.1 107 242
4.64 60.8 313 84.3 166
15.60 83.9 30.0 61.7 99.5

used in the inversion recovery experiments to separately
determine J£ and JZ, the attenuation is ~20% for the
largest quadrupole splitting. This imperfect pulse non-
selectivity effects the values of the coefficients in (2.2) and
(2.3), but does not affect the exponents [93]. Consequent-
ly, the effect on the crystal-frame spectral densities de-
rived from the orientation dependence of J+ and J¥ (Sec.
ITI) should be negligible; indeed, omission of the data
from the two smallest angles 0, (with the largest split-
tings) does not significantly affect the fitted crystal-frame
spectral densities.

In a second experimental series, the adiabatic (zero-
frequency) lab-frame spectral density J5=J%(0,6,c)
was determined by a two-dimensional quadrupolar echo
(2DQE), (90°),-7-(90°)% ,-7-acq., as described elsewhere
[41,51]. Figure 3 shows a *Na F2 spectrum recorded
during the 2DQE experiment. (The F2 spectrum is the
Fourier transform of the signal recorded in the acquisi-
tion period ¢,. The F1 spectrum is the Fourier transform
with respect to the refocusing time 7 of one of the F2
peaks.) The magnetic-field inhomogeneity in the 2DQE
experiment was estimated to be 8§=10 Hz. From the
difference in linewidth at half-height of the central line in
the F1 spectra derived from the F2 central peak (Avgg)
and from the F2 satellite peak (Avgg), we determine J ¢
according to [41,51]

J§=m(Avip—Ave) . (2.5)

Avgg and Avyp were determined from Lorentzian fits to
the central peak. This procedure introduces a small sys-
tematic error in J§, since the central peak in F2 contains
contributions from all crystal orientations present in the
sample, i.e., also from the small powder fraction. We be-
lieve, however, that this error is negligible since (i)
AvGg <<Avgg, (ii) the aligned powder fraction is small,
and (i) the angular dependence of Avgg
(=JE+JL+8/2) is weak (cf. Table I). The results of the
2DQE experiments are collected in Table II.

III. SPIN-RELAXATION ANISOTROPY

The lab-frame spectral densities Jii (kw;,0;,c), deter-
mined from the spin-relaxation experiments described in
Sec. II C, depend on the orientation, 6, ., of the aligned
liquid crystal with respect to the static magnetic field
(Tables I and II). The functional form of this orientation
dependence is completely determined by the macroscopic
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FIG. 4. Orientation dependence of the adiabatic (a) and
nonadiabatic (b) laboratory-frame spectral densities. The curves
resulted from fits of Egs. (3.1) and (3.2), with the nine crystal-
frame spectral densities given in Table III.

orientational symmetry (point group) of the mesophase
[46]. For a uniaxial phase, such as L, (point group
D, ), the orientation dependence takes the form [52-54]

2
Jh(kwr,0,c)= 3 Fin(0,cW 5 koy) . 3.1

n=0

The angular functions F},(6;c) can be expressed in
terms of the reduced Wigner functions [55] d2,(8.¢) as

Fin(01c)=(1=8,0/2){[d},(0,c) P+ [dE (.01 .
(3.2)

The uniaxial relaxation anisotropy in (3.1) applies to
any phase which has an effectively uniaxial symmetry
with respect to a fourth-rank tensor [46,47]. In practice,
this means point-group symmetry D¢ or higher. Al-
though the macroscopic symmetry of an L, phase is
D, the local symmetry may be lower in the presence of
structural defects. Even if the local symmetry is lower

TABLE III. Crystal-frame spectral densities for 2*Na in the
L, phase. The propagated experimental random error (+20) is
given.

Jolkoy) s71)

k n=0 n=1 n=2

0 187+12 261+17 63+10
1 74.9+3.8 46.2+1.1 30.3+2.8
2 60.1+2.3 39.6+1.3 28.0+0.3
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than D, however, the uniaxial form (3.1) remains valid
provided that the observed nucleus samples the global
(D ;) symmetry on a time scale that is long compared to
the variation in the local spin-relaxation rates (which
would be observable in the absence of such fast sam-
pling). This point is further discussed in Secs. VI A and
VIIA.

The set of nine crystal-frame spectral densities
(CFSD’s), J,s,(kwL) with k, n =0,1,2, constitutes the
complete, model-independent information content acces-
sible by fixed-field spin-relaxation measurements on a uni-
axial phase. Using (3.1) and (3.2) we determine the nine
CFSD’s by generalized linear least-squares fits [50] to the
lab-frame spectral densities in Tables I and II. The fits
are shown in Fig. 4 and the resulting CFSD’s are collect-
ed in Table III.

IV. EVIDENCE FOR CURVATURE DEFECTS

The CFSD’s in Table III reflect thermal fluctuations in
the components of the electric-field gradient (EFG) ten-
sor at the Na™ nucleus. In a classical lamellar phase,
built from homogeneous planar bilayers, only two kinds
of motion contribute to the EFG fluctuations: fast local
motions and counterion diffusion along the bilayer nor-
mal.

The local motions comprise restricted motions (libra-
tions and intermolecular vibrations) within the primary
hydration “shell” of the counterion (time scale 10713 ),
collective hydration dynamics (1072 s), and local (length
scale 10719 m) counterion and surfactant headgroup
motions (10712-107105) [56-58]. At conventional mag-
netic fields these motions are much faster than the Lar-
mor frequency w; (here 1/w; =6.0 ns), and thus contrib-
ute equally to the adiabatic and nonadiabatic spectral
densities. The observation of a quadrupole splitting im-
plies that the local motions experience orientational re-
strictions (imposed by the charged bilayer surfaces).
However, since the local quadrupole coupling constant
(QCO) (X15c=~100 kHz [42,43]) is roughly a factor 40
smaller than the rms QCC [58], the effect of local anisot-
ropy on the fast-motion spectral densities is negligible.
Consequently, the local motions merely add a constant
contribution J,,, =J$'°(0) to all nine CFSD’s. In a re-
cent study [43] of the »*Na relaxation anisotropy in the
H , phase of the present system, we demonstrated explic-
itly that J, . is indeed independent of k (extreme narrow-
ing) and n (weak anisotropy).

The local motions establish a locally averaged EFG
tensor and a corresponding local QCC ;... As a result of
counterion diffusion relative to the bilayer surface, X,
fluctuates in magnitude, thereby inducing spin relaxation.
In a classical lamellar phase only counterion diffusion
along the bilayer normal causes Y;,. to fluctuate and,
since the local EFG is uniaxial, contributes only to the
three CFSD’s with symmetry index n =0 [59]. In Ap-
pendix A we show, through explicit calculations for a
realistic model, that ‘“radial” (along the bilayer normal)
counterion diffusion contributes with a small (<10 s™!)
constant (extreme narrowing) term JS$,=J$9(0) to
each of the three CFSD’s J § (ko ).

For a classical L, phase, with homogeneous planar bi-
layers, the CFSD’s thus take the form

JS (ko )=J10c + 8,00 Sa > 4.1

with J$; <10 s™!. It is abundantly clear that (4.1) does
not even qualitatively describe the data in Table III. We
thus conclude that, in the investigated sample, the bi-
layers are not homogeneous and planar.

As in all liquid crystals, the microstructure of the L,
phase is subject to thermal fluctuations. Of particular
importance for the NMR behavior are those fluctuation
modes that introduce bilayer curvature, i.e., the smectic
undulation modes [60-62]. In the present L, phase, with
densely spaced and highly charged bilayers (without neu-
tral salt), the dominant undulation modes are expected to
be of small amplitude and of long wavelength [63,64]. In
the case of counterion spin relaxation, we therefore ex-
pect contributions from counterion diffusion along the
undulating bilayer only to the adiabatic spectral densities
[45]. If bilayer undulations were to contribute to the
nonadiabatic spectral densities, they would mainly affect
J € (kw; ), which is of second order in the fluctuation am-
plitude while J§,(kw; ) and J$,(kw, ) are of fourth order
[45]. However, in our recent 2*Na spin-relaxation study
of the H, phase, such nonadiabatic contributions were
shown to be negligible [43].

Taking bilayer undulations into account, the CFSD’s
for a classical L , phase should thus be of the form

JC (kaop )= 00 +8,00 Sa + 81051 40) . (4.2)

As seen from Table III, however, the nonadiabatic
CFSD’s exhibit a considerable frequency dependence and
depend strongly on the symmetry index n. Since these
features can only be accounted for by counterion
diffusion over a highly curved bilayer surface, we con-
clude that the bilayers contain intrinsic structural defects.
The frequency dependence provides a rough estimate of
the length scale L of these defects, since the characteristic
diffusion time L2/(4D,) must be of the order of the Lar-
mor period 1/w; =6.0 ns. With the surface diffusion
coefficient D, =4.4X 10719 m2s~! as determined for the
Na% counterions in the H, phase [42,43], we thus find
L =30 ;\, comparable to the bilayer thickness.

As we are concerned here with the “ground-state” mi-
crostructure of the L, phase, we consider henceforth
only the six nonadiabatic CFSD’s. Dropping the undula-
tion contribution in (4.2) and introducing a contribution
from counterion diffusion over the curved surface of the
defects, we have

JC (ko )=J10c +8,0/Sa HIS M ko ) 4.3)

The validity of this formal decomposition of the CFSD’s
is ensured by the time-scale separation of the dynamic
processes responsible for each of the three terms [47].
[The time scale of the radial contribution (Appendix A) is
an order of magnitude shorter than the characteristic
time for counterion diffusion over the bilayer defects (cf.
above).]

The defect spectral densities in (4.3) can be expressed
(for a spin I =3 nucleus) as
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IS ko, ) =m%* 4,j & koy) , (4.4)
where Y is the residual QCC, which is spatially averaged
by counterion diffusion along the bilayer normal and
hence equal to PY,. (Appendix A). The reduced spectral
densities (with the dimensions of time), associated with
counterion diffusion over the defects, are defined in terms
of Wigner functions [55] as

1 )
- def| —
jlef( ke, )——An fo dt cos(kwy 1)

X[AD33 Q2D (Qey)) —8,045],
(4.5)

where Qcy =(dc,0cy, —) are the time-dependent Euler
angles specifying the transformation from the crystal
frame C (z.=symmetry axis of the L, phase) to the in-
terface frame N (z, =local surface normal). (We assume
here that Y is laterally uniform.) The three fluctuation
amplitudes A, are simply the initial values of the time
correlation functions within square brackets in (4.5), i.e.,

A, ={[d3o(Ocy)1?) —8,045 (4.6)

with

AQ=(d%0(9CN)> . 4.7)

To quantitatively characterize the bilayer defects we
must introduce a geometric model that allows us to ex-
press the fluctuation amplitudes in (4.6) and the reduced
spectral densities in (4.5) in terms of the parameters
describing the defect shape and density, and the coun-
terion surface diffusion coefficient. This is the subject of
Secs. V-VIII. Already at this stage, however, we can ex-
clude the class of defect models that only introduces sur-
faces perpendicular to the smectic plane, e.g., straight cy-
lindrical pores or rectangular slits. For this class of de-
fect models, with 0.y =/2, the quantity within square
brackets in (4.5) vanishes identically for n =0 and 1. Sur-
face diffusion over defects can then contribute only to
J$ (ko ), in striking disagreement with the experimental
results in Table III.

In the following analysis we set J$y =0 in (4.3). As
discussed in Appendix A and Sec. X, the conclusions re-
garding bilayer defects are only marginally affected by al-
lowing for an estimated contribution of JS <10 s™!
from “radial” counterion diffusion.

The quadrupole splitting v, is a valuable complement
to the spectral density data since it involves the residual
QCC X and the geometric parameter 4y, which also ap-
pear in the spectral densities J$%(kw, ). Since the un-
dulation modes are expected to be of small amplitude (cf.
above), we neglect their effect on the quadrupole split-
ting, which then takes the form (for a spin I =2 nucleus)

’V%EVQ(HLC:O):%AQY . (4.8)
In Sec. III, we tacitly neglected, for the same reason, the
smoothing effect of bilayer undulations on the orientation
dependence of the lab-frame spectral densities in (3.1).
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V. DEFECT TOPOLOGY AND SYMMETRY

Having relinquished the notion of a classical bilayer,
we now face the problem of quantitatively characterizing
the unknown microstructure and of calculating the spec-
tral density contributions JG%(kw;) associated with
diffusion over the surface of this microstructure. Al-
though we cannot expect to uniquely determine the mi-
crostructure, the six nonadiabatic CFSD’s and the quad-
rupole splitting impose severe constraints on the allowed
microstructures. These data can be analyzed in several
ways.

One approach is to introduce a detailed geometric
model for the microstructure and to fit the parameters in
this model directly to the data. We shall take a more
general approach, however, where the data analysis is
performed in two steps. In the first step, we transform
the data into quantities that are more directly amenable
to physical interpretation in terms of microstructure and
dynamics. The nature of this transformation depends on
the general properties of the defects, notably their topolo-
gy, point-group symmetry, and orientational order, but
does not depend on the detailed geometry (dimensions
and curvatures) of the defects. Given the general proper-
ties, this transformation is unique, i.e., it is a one-to-one
mapping.

The transformed quantities include the local-motion
contribution J, ., the residual QCC ¥, and the fluctuation
amplitudes A4,. The latter are static quantities, indepen-
dent of the surface diffusion dynamics, and can be given a
geometrical meaning. They are model independent in the
sense noted above, and can be related to results from oth-
er physical experiments or from computer simulations.

In the second step of the analysis, we provide explicit
geometric interpretations of the fluctuation amplitudes
(or of closely related quantities) in terms of several
specific microstructural models. The geometric model
parameters thus determined should be regarded as illus-
trations of how the model-independent quantities can be
realized in terms of physically reasonable microstruc-
tures. It should be understood, however, that we cannot
arrive at a unique microstructure; we can merely estab-
lish whether a given microstructure is consistent with the
data.

Considering the microstructure of the nearby nematic
and hexagonal phases (Fig. 1), we focus on microstruc-
tures for the L, phase that introduce water into the bi-
layers in such a way that the average mean curvature of
the monolayer is positive, i.e., convex towards water. We
thus exclude “reversed defects,” connecting adjacent bi-
layers. The topology of the oil and water regions within
the bilayer admits three possibilities: the bilayer can be
oil-continuous, bicontinuous, or water-continuous. This
corresponds, respectively, to point defects (aqueous
pores), line defects (aqueous slits or amphiphile ribbons),
and reversed point defects (discrete micelles with smectic
translational order).

For simplicity, and also on physical grounds, we im-
pose certain symmetry constraints on the defects. The
pores and micelles are taken to be uniaxial, by which we
mean point-group symmetry D¢, or higher [46,47]. The
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Pore Ribbon Discoid

FIG. 5. The three topological types of structural defect that
impart a positive average mean curvature to the bilayer inter-
face.

symmetry axis of every pore is taken to be parallel to the
bilayer normal and, neglecting bilayer undulations, to the
symmetry axis of the L, phase. The micelles, however,
need not be perfectly aligned. On physical grounds, we
expect the micelles to have a discoidal shape. The line
defects can be viewed either as aqueous slits or as amphi-
philic ribbons. They are taken to be of indefinite length
(end effects are neglected) and locally of D,, symmetry
(with the two-fold axis in the bilayer plane). We shall
refer to these three types of microstructure as pores, rib-
bons, and discoids. They are schematically illustrated in
Fig. 5.

Since the bilayer is fluid, the defects must be dynamic
entities: they are continuously created and annihilated.
These processes are expected to be slow since they in-
volve energetically unfavorable oil-water contact. On the
time scale of counterion diffusion over the curved defect
surface (a few nanoseconds), the defect geometry can thus
be regarded as static. The dynamic nature of the defects
also implies that they are polydisperse in size and shape.
In the following analysis, however, we do not explicitly
take defect polydispersity into account.

VI. PORES

A. Spectral densities

We consider now the contributions J5%(kw; ) to the
nonadiabatic CFSD’s from counterion diffusion over the
surface of a bilayer containing uniaxial pores (cf. Fig. 5).
The decomposition of the lab-frame spectral densities in
terms of three CFSD functions presupposes an effectively
uniaxial symmetry of the entire surface on the time scale
on which the corresponding time correlation functions
decay (Sec. III). In principle, the inclusion of pores into
the bilayer breaks the uniaxial symmetry of the latter (ex-
cept in the special case of a hexagonal pore distribution).
In practice, however, the deviation from uniaxial relaxa-
tion behavior is not likely to be significant, in particular,
as regards the nonadiabatic CFSD’s.

Rather than specifying the pore geometry at the outset,
we assume that the reduced spectral densities in (4.5) are
Lorentzian. Neglecting the radial contribution in (4.3)
(cf. Sec. IV and Appendix A), we then obtain for the six
nonadiabatic CFSD’s

r

‘ (6.1)

Jalkop ) =Jie + T Ay,
nn L loc TTX n 1+(k(0LTn)2

where w; is the Larmor frequency and the 7, are
(effective) correlation times associated with diffusion over
the curved surface. The accuracy of this Lorentzian ap-

proximation can be assessed for particular surface
geometries where J$%(kw, ) has been calculated exact-
ly. This is the case for spherical and cylindrical surfaces,
where (6.1) is exact, and for spheroidal [54] and
catenoidal [65] surfaces, where the systematic error intro-
duced by the Lorentzian approximation is smaller than
the present random errors propagated from the experi-
mental uncertainties (cf. below).

The three amplitude factors A4,, defined by (4.6), can
be expressed in terms of two independent quantities
[46,54], usually chosen as the second-rank and fourth-
rank orientational order parameters {P,(cosOcy)) and
(P,(cosbcy)). We can therefore, for example, express
Ay interms of 4, and 4, as

Ay=6A4,—(A,+44,)7. (6.2)

We choose as independent parameters the quantities o,
and o, defined through

O, = ( Sin'"OCN > = foﬂd 9CNf(9CN )SinmecN ’ (6.3)

where f(6cy) is the normalized distribution function for
the local interface normal orientations experienced by the
Na™ counterions. The non-negative quantities o, and o,
are convenient in the present context since they vanish
for a classical (planar) bilayer. From (4.6) and (6.3) we
obtain

Ag=3o4—03), (6.4a)
A1:%(0-2._0-4) ) (6~4b)
A,=30,. (6.4¢)

The following general inequalities can be established for
the amplitude factors:

9 3
0< Ag<2, 0<54,,4,<1%,

—+S4p=1, (6.5)
and for the parameters 0, and o 4:
0<0,<0,<V0,<1. (6.6)

For a continuous bilayer with pore defects, the distri-
bution function f(6.y), and hence the parameters o,
and o4, depend on the geometry of the defects as well as
on their density. These factors can be formally separated
by writing

FOcn)=xF(Ocy)+(1—x)8(0cy) 6.7)

where x is the fraction of the bilayer surface that belongs
to defects and f(Ocy) is the distribution function for a
defect. Combination of (6.3) and (6.7) yields

on=x8, , 6.8)

where &, refers to the defect. In contrast, the correla-
tion times 7, do not depend in a simple way on the defect
area fraction x. The factorization in (6.8) shows that the
ratio 0,/0,=86,/6, is an intrinsic property of the pore
defect.

B. Data transformation

The six nonadiabatic CFSD’s in (6.1) are determined
by the seven independent quantities J., X, 02, 04, To» T15
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TABLE IV. Quantities derived from the quadrupole splitting

and the nonadiabatic = CFSD’s assuming  uniaxial

pores.
Quantity Value
Jioe 871 1745
|x| (kHz) 111+8
0, 0.2810.03
o4 0.19:£0.02
(72/0'4 1.48+0.06
To (ns) 2.2+0.4
™, (ns) 2.0+0.4
7, (ns) 1.740.7

and 7,. To determine all seven quantities, we invoke also
the quadrupole splitting v%, given by (4.8) with

AQ—_—I—'%O’z .

(6.9)

We can now transform the seven experimental data
into the seven derived quantities, given in Table IV, along
with the propagated experimental errors. We emphasize
that we are not fitting model parameters here. Rather,
we are making a transformation of the experimental
quantities into a set of new quantities more amenable to
direct physical interpretation. This transformation relies
on the assumed time-scale separation in (4.3), the
Lorentzian approximation in (6.1), and the symmetry and
topology of the defects, but it is not restricted to a partic-
ular defect geometry or a particular dynamic model. In
Appendix B we describe how the data transformation is
carried out. We also show that it leads to a unique set of
derived quantities.

The data transformation has the virtue of separating
the spectral density information into nonredundant static
(04,04) and dynamic (7,7, 7,) quantities. Provided that
the counterion distribution is uniform over the surface,
o, and o, are purely geometric parameters that can be
calculated with relative ease even for quite complex mi-
crostructures, where a full spectral density calculation
would be computationally demanding.

C. Pore geometry

The simplest possible model of pore geometry requires
two parameters, specifying the bilayer thickness and the
pore diameter. For this class of two-parameter models,
the distribution function f(6cy) involves a single dimen-
sionless parameter A, which determines &, and &,. For
these uniaxial pore models we take A=, /a, with 2b the
thickness of (the planar portion of) the bilayer and 2a the
minimum pore diameter (at the midplane of the bilayer),
cf. Fig. 6.

For the geometries considered, the quantity o,/0,is a
monotonic function of A. Consequently, the experimen-
tally derived quantities o, and o4 can be uniquely con-
verted to A and x, specifying the geometry and density of
defects, respectively. We perform this conversion in two
steps. First A is determined from the experimental ratio
0,/04 With this A value, &, and &, can be calculated
and x determined from the experimental o, or o4 by
means of (6.8). This procedure is preferred since the pro-
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FIG. 6. Cross sections of the hemitoroidal and catenoidal
pore geometries with the parameters a and b defined. The shad-
ed regions correspond to the hydrocarbon core of the bilayer,
with the dimensions obtained from the analysis in Sec. VI.

pagated experimental uncertainty in 0,/0, is consider-
ably smaller than that in the individual o,, (Table IV).
Of course, it may happen that no A value can reproduce
the experimental o,/0,; the model would then be dis-
carded. On the other hand, to be fully consistent with
the NMR data, the model must account not only for o,
and o4, but also for the correlation times 7,,.

We consider two specific pore geometries: the hemi-
toroidal pore and the catenoidal pore, shown in Fig. 6.
In the hemitoroidal pore the defect is healed by a curved
lip which forms the inner part of a torus. The geometric
parameters are given by

(m/2)(1+A)— 44

R R T (6.10)

(3m/8)(1+A)— 1A

G, At —2n . (6.10b)
The other pore model is a truncated catenoid. In con-
trast to the hemitorus, both principal curvatures ¢, and
¢, are nonuniform on the catenoid. In fact, ¢;,=—c¢, so
that the mean curvature vanishes at every point, just as
for a planar bilayer. (The catenoid is the only surface of
revolution that is also a minimal surface [66].) Despite
the wunphysical discontinuity at its boundary, the
catenoidal pore model is included here to assess the sensi-
tivity of the NMR data to the detailed curvature distribu-

tion within the defect. For the catenoidal pore

.

825X Tsinh(2A) ’ (6.11a)
—_ 4tanh(X)

4= SAtsinh(2A) ° (6.11b)

Figure 7 shows the ratio o¢,/0,=86,/8, versus
A=b/a, as given by (6.10) and (6.11), for the two pore
geometries. Both models are seen to be consistent with
the experimental o,/0,4 Since &,/8, varies relatively
weakly with A for the hemitoroidal pore, the propagated
uncertainty in A is large for this model. The deduced
values for the two model parameters A and x, and for
several quantities derived therefrom (cf. Sec. VID), are
given in Table V.
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FIG. 7. Ratio of geometric parameters for the hemitoroidal
and catenoidal pores in Fig. 6. The shaded band corresponds to
the experimental o,/04 with propagated random errors (Table
Iv).

D. Defect density

The oil-continuous bilayer with pores is unique among
the three topological types of microstructure: only in this
case is the curved area fraction x also a measure of defect
density. For bilayers fragmented in one (ribbons) or two
(discoids) dimensions, the defect (or aggregate) density
can be varied without affecting the curved area fraction
x, which is fully determined by the aggregate (ribbon or
discoid) shape.

For a bilayer with pores, the curved area fraction x can
be converted to more direct measures of defect density.
The fraction I of the bilayer plane occupied by pores can
be obtained from the relation

1/T—1_ 4

X135 (6.12)

with 4 the curved surface area of the pore and § the area
in the bilayer plane occupied by the defect. For the pore
geometries considered here, the right-hand side of (6.12)
is a function of A only. For the hemitoroidal pore,

1/T—1 _ A[m(1+A)—24]

L /x =1 (102 , (6.13a)
and for the catenoidal pore
1/T—1 _ 2A+sinh(21) (6.13b)

1/x —1 1+cosh(2A)

A quantity of relevance for the permeability of water
and ions through the bilayer is the fraction ¥ of bilayer
plane that is open (when viewed from above). For the

TABLE V. Model parameters and derived quantities for uni-
axial pores.

Derived Hemitoroidal Catenoidal
Parameter quantity pore pore
A 2.3+1.2 1.26+0.09
x 0.76+0.13 0.48+0.07
r 0.721+0.14 0.43+0.07
Y 0.06+0.04 0.12+0.02
v 0.16+0.04 0.21+0.03

hemitoroidal pore,

_ a+ahr
AM1+2) (6.14a)
and for the catenoidal pore
I
¥~ T+cosh(21) (6.14b)

Another quantity, of interest in connection with x-ray-
diffraction data (cf. Sec. VI E), is the volume fraction ¥ of
water in the bilayer, which can be obtained from A and x
through the relation

y=2T
2b8
with ¥ the aqueous volume contained in a pore. For the
hemitoroidal pore,

| M@/204)—41]

(6.15)

v=r 5 R (6.16a)
(1+A)
and for the catenoidal pore
_ 1+sinh(24)/(21)
v=r 1+cosh(21) (6.16b)

The four measures of pore density (x, I', ¥, and ¥) are
given in Table V. The curved area fraction is high, with
only 1 (hemitoroidal pores) or J (catenoidal pores) of the
total surface being planar. It should be remembered that
these quantities refer to the hypothetical surface on
which the counterions diffuse (cf. Sec. VI E).

E. Pore dimensions

The geometric parameters o, and o, derived from the
spin-relaxation data are invariant under isometric scaling
of the microstructure, and hence cannot be used to deter-
mine its length scales. This can be done, however, by in-
voking the repeat distance d determined by x-ray
diffraction (Sec. IIB) or by analyzing the correlation
times 7,. We make the calculation with reference to the
dividing surface that separates nonpolar (hydrocarbon
chains) and polar (water, counterions, and headgroups)
regions. Quantities referring to this partitioning will be
given a zero subscript.

The volume fraction ¢, of nonpolar material in the L,
phase can be expressed as

2b,

¢0=(1—\P0)T . (6.17)
From the sample composition and the partial specific
volumes (in A%) v (H,0)=30, v(C,,)=350, v (C,o) =296,
v(SO4Na)=57, and v (OH)=12 (the headgroup volumes
are obtained by difference from the partial specific
volumes of the amphiphiles and that of the hydrocarbon
chains [67]), we obtain ¢,=0.288.

To make contact with the spin-relaxation data, which
reflect the hypothetical surface on which the strongly
confined (Appendix A) counterions diffuse, we assume
that this surface has the same analytical shape as the
polar/nonpolar dividing surface, but with different di-
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mensions according to

b—bozao_aza . (6.18)
For the hemitoroidal pore the two surfaces are parallel.
The displacement parameter 6 is taken to be 5 A. The
volume fraction V¥, referring to the diffusion surface, can
be converted to W, referring to the dividing surface, by
means of the relation

W=V o%% (6.19)
N '
We thus obtain for the hemitoroidal pore

W,=0.27+0.07, a,=12.2+3.8 A, and by=11.6+1.2 A,
and for the catenoidal pore W;=0.26%0.04,
ay=17.9x1.1 A, and by=11.5£0.6 A. (The drawings in
Fig. 6 are based on these dimensions.) Roughly } of the
bilayer core is thus composed of polar material. As ex-
pected, the bilayer half-thickness b is intermediate be-
tween the value 8.4 A, corresponding to a defect-free bi-
layer [with W,=0 in (6.17)], and the value 16.7 A, corre-
sponding to a fully extended C,, chain [67].

As regards the mean curvature H (cf. Sec. X) and the
general shape, the catenoidal pore (H =0) is intermediate
between the cylindrical pore (H <0) and the hemi-
toroidal pore (H >0). While the cylindrical pore can be
excluded since it would give J$%f () =J % (0) =0 (Sec.
IV), only a small deviation from this geometry (cf. the
catenoidal pore in Fig. 6) is required to account for the
CFSD’s. In the following, however, we shall only discuss
the hemitoroidal pore, since the other two pore
geometries involve unphysical discontinuities.

VII. RIBBONS

A. Spectral densities

We consider now the contributions J 5% (kw; ) to the
nonadiabatic CFSD’s from counterion diffusion over the
surface of a ribbon (bounded by two slits) with its axis in
the bilayer plane (Fig. 5). We assume that the ribbon
axis, i.e., the normal to its cross section, is a twofold axis.
The ribbons (but not necessarily the slits) are taken to be
monodisperse in size; however, the in-plane orientation of
the twofold axis is not required to be uniform. There are
two limiting cases: (i) differently oriented two-
dimensional domains of straight ribbons of finite length,
or (ii) continuously curved ribbons of indefinite length.
We assume that the length of the straight ribbons or the
radius of curvature (or persistence length) of the curved
ribbons is much larger than the bilayer thickness. Coun-
terion diffusion along the length of the ribbon may then
contribute to the adiabatic CFSD’s, whereas only coun-
terion diffusion around the ribbon contributes to the
nonadiabatic CFSD’s.

If the counterions did not diffuse from one ribbon to
another, the surface-diffusion contributions to the nona-
diabatic CFSD’s would be different for ribbons with
different in-plane orientation. However, if this orienta-
tional distribution is sampled on a time scale that is short
compared to the corresponding variation in spin-

PER-OLA QUIST AND BERTIL HALLE 47

relaxation rates, then one observes the orientationally
averaged CFSD’s. To be consistent with the assumed
uniaxial relaxation behavior (Sec. III), the sampled orien-
tational distribution of ribbon axes must exhibit at least
fivefold symmetry [46].

Since the ribbons are locally straight, the surface nor-
mal is everywhere perpendicular to the twofold axis. Sur-
face diffusion around the ribbon is then described by the
two ribbon-frame spectral density (RFSD) functions [46]

Jﬁ(kwL)=%Tr2)?2f0w dt cos(kawy t)

X[ {cos(2¢% )cos(2dz))

—(cos(2¢))?], (7.1a)
IRkwy) =377 [ 0"’ dt cos(kwy t)
X (sin(2¢% )sin(2¢z)) , (7.1b)

with ¢ the angle around the ribbon axis. The symmetry
indices 4 and B refer to the irreducible representations
A, and B, of the symmetry group D,, of the ribbon [46].

The six nonadiabatic CFSD’s can be expressed in terms
of J,,. and the four RFSD’s as [46]

JStko ) =T +3T koy ), (7.2a)
JGlko ) =T+ IR ko, ) , (7.2b)
IS ko ) =T+ R (koy ) . (7.2¢)

At each frequency (k =1 or 2), we can thus solve for J .,
JR(kw;), and JR(kw; ). The results, given in Table VI,
show that the data are consistent with the general as-
sumptions made so far (since Jy,. is independent of k),
and that the ribbon cross section is distinctly noncircular
[since JR (ko )FIR(koy)].

To separate static and dynamic information, we now
invoke the Lorentzian approximation

Ts

J§<kwL)=wzyzAsm , (7.3)
with S = A or B. The amplitude factors are

A,=30,—03), (7.4a)

Ap=3(0,—0,), (7.4b)
with

0, =(sin"¢g )= foz”dqu fldg)sin"dg , (7.5)

with ¢, =0 on the planar part of the ribbon. In the limit
of a circular cross section, 4 , = Ay :% and (7.3) is exact
[41-43].

TABLE VI. Ribbon-frame spectral densities derived from
the nonadiabatic CFSD’s assuming ribbons with twofold sym-
metry.

k Jioe 871 Jilkoy) (s71) JEkwy) 71
1 21.4+3.4 71.4+7.6 49.6+7.2
2 21.610.6 51.4+3.7 36.0+2.8
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B. Data transformation

Having already determined J,., there remains five
quantities (Y, 0,, 04, 74, and 75) to be determined from
the four RFSD’s in Table VI and the quadrupole split-
ting. The correlation times 7, and 75 are obtained
directly from (7.3), without invoking the splitting. As
seen from Table VII, 7 , =75 within the experimental un-
certainty.

The quadrupole splitting is still given by (4.8) and (6.9),
ie.,

Vy=1(1—10,)7 . (7.6)

To obtain this result, we have also averaged over the in-
plane orientation of the ribbon axis. (This orientation
must be distributed with at least threefold symmetry,
since the line shape obtained from a powder sample is of
the uniaxial type.)

In contrast to the case of uniaxial pores (Appendix B),
the data transformation does not produce a unique set
(X,0,,04) in the case of the ribbon microstructure. Since
we can only determine the magnitude lv‘é{ of the quadru-
pole splitting, two different sets of parameter values may
be consistent with the data. As seen from Table VII,
however, the set corresponding to v% <0 can be discard-
ed on physical grounds: the large o, and o, imply that
nearly all surfaces are perpendicular to the L, phase
director. (The much larger residual QCC Y, as compared
to the nearby H, phase [42,43], also speaks against this
alternative.) A comparison with Table IV shows that the
derived quantities do not differ significantly from those
derived assuming a bilayer with uniaxial pores. However,
the geometric interpretation of the parameters o, and o,
is of course different for the two microstructures.

C. Elliptic ribbon

To obtain a geometric interpretation of the quantities
0, and o, for the ribbon microstructure, we assume that
the cross section is a rectangle with semiellipses on two
sides. This elliptic ribbon model involves three length
scales: a, b, and ¢, defined in Fig. 8. The cross-sectional
shape, and hence o, and o, is determined by two dimen-
sionless parameters, which we choose as n=c /b, the as-
pect ratio of the rectangular part, and p=a /b, the axial
ratio of the elliptic part. The elliptic ribbon reduces to an
elliptic cylinder for =0, and to a circular cylinder for
n=0and p=1.

As in the case of pores, we can write

TABLE VII. Quantities derived from the quadrupole split-
ting and the RFSD’s assuming ribbons with twofold symmetry.

Quantity vy >0 v)H <0
74 (ns) 2.3+0.7 2.3+0.7
5 (ns) 2.3+0.8 2.3+0.8

o, 0.25+0.02 0.92+0.01

o4 0.17+0.01 0.89+0.01

0,/04 1.45+0.06 1.03£0.01
|x| (kHz) 104+4 168+4
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FIG. 8. Cross section of the elliptic ribbon geometry with the
parameters a, b, and ¢ defined. The shaded region corresponds
to the hydrocarbon core of the ribbon, with the dimensions ob-

tained frq,m the analysis in Sec. VII and a displacement parame-
ter 5=5 A.

0, =x8, , (7.7
where x is the fraction curved surface on the ribbon and
&, refers to the curved (elliptic) part of the ribbon.
Whereas o, depends on 7 and p, &,, depends only on p.
We can thus determine p from the ratio ¢,/0, and then
obtain 1 from (7.7). The defect density, however, cannot
be determined as this requires knowledge of the slit width
(Sec. VIE).
For the elliptic ribbon, we obtain

—1
- o
x 1+pE , (7.8a)
6,=(K/E—1)/(p>*—1), (7.8b)
6,=(1+p?>—2K/E)/(p*—1)*, (7.8¢)

where K and E are the complete elliptic integrals of the
first and second kind with modulus V'1—p~2. Figure 9
shows the ratio o,/0,=8&,/6, versus the axial ratio p of
the ellipse: o,/0, increases monotonically with p from
the value 4 at p=1 (circular cylinder). The data are seen
to be consistent with an elliptic ribbon geometry with
p=1.4%0.2 and »=1.0x0.3. (It may be noted that the
v% <0 solution, with 0,/0,<4%, is inconsistent with an
elliptic ribbon geometry.)

2.0 T T T T T T T T T

1.8 1 ]

1.6

05/ 04

1.4

1.2 q

1.0 1 1 L . 1 1 1 1 1
1.0 1.2 1.4 1.6 1.8 2.0

A=alb

FIG. 9. Ratio of geometric parameters for the elliptic ribbon
in Fig. 8. The shaded band corresponds to the experimental
o,/04 with propagated random errors (Table VII).
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VIII. DISCOIDS

A. Spectral densities

We consider now the contributions J5%(kw; ) to the
nonadiabatic CFSD’s from counterion diffusion over the
surface of orientationally disordered micelles. Restricted
micelle reorientation does not contribute significantly to
the nonadiabatic CFSD’s since it is much slower than the
surface diffusion, but acts only to average the
orientation-dependent micelle-frame surface-diffusion
spectral densities over the orientational distribution for
the angle 6.;, between the micelle symmetry axis and the
L, phase director [44,45]. In this limit the smectic
translational order (layering) of the micelles does not
directly affect the nonadiabatic CFSD’s.

An efficient numerical scheme for calculating the spec-
tral densities J¥(ko, ) in the case of oblate and prolate
spheroidal micelles has recently been developed [54], and
applied to H and **Na spin-relaxation data from the two
nematic phases in the present lyotropic system [44].
Since we do not want to restrict the analysis to this par-
ticular micelle geometry, however, we invoke the
Lorentzian approximation for J$%(kw, ), ie., we ex-
press the nonadiabatic CFSD’s in the form

r
IS (ko )=J,y, + T, ————— . (8.1)
m K OLI = oo T X o 7
The amplitude factors «,, in (8.1) can be expressed as
ay=1i[(1+2S+80)4,+2+1LS—-20)4,
+Q2—-25+£0)4,], (8.2a)
a;=iH(1+38—20)4,+(2+35+%£Q)4,
+(2—%s5—-:0)4,], (8.2b)
=i (1-2S+30)4,+(2— LS —10)4,
+2+25+10)4,], (8.2¢)
with the micelle order parameters
S =(P,(cosbcy)) , (8.3a)
Q =(P,(cosOcy)) , (8.3b)

and the micelle-frame amplitude factors A4,, related via
(6.4) to the geometric parameters o, = {sin”6,.y ), with
6,y the angle between the local surface normal and the
micelle symmetry axis.

By means of (6.4) and (8.2), the three independent am-
plitude factors «, can thus be expressed in terms of the
four independent parameters o,, 04, S, and Q. In the
limit of complete orientational order (S =Q =1), the «,
reduce to the corresponding 4,,.

B. Data analysis

In the limit of complete orientational order (S =Q
=1), the geometry-independent part of the analysis in
Sec. VI, and the results in Table IV, are valid also for the
discoidal microstructure. In general, however, we now

have nine unknown quantities (Jy.., X, To» 715 T2 T2, T
S, and Q), which obviously cannot be determined from
the six CFSD’s and the quadrupole splitting, now given
by

S(1—20,)7 - (8.4)

To proceed we introduce two constraints that provide
unique relationships between S and Q and between o,
and o,. These constraints are introduced in the form of
one-parameter orientational distribution functions for the
angles Oy, and 6,,y, respectively. The former is taken to
be of the form

f(Bcpr)~exp(—u sin¢y,) , (8.5)

which, for the high degrees of order of interest here,
amounts to retaining the leading term in an expansion of
the potential of mean torque in powers of O¢;. (The
linear term vanishes by symmetry.) This should be a
highly accurate approximation here [44].

For a given micelle order parameter S [which also fixes
Q through (8.5)], we can now calculate the seven quanti-
ties Jioc, X> To» T1» T2» O, and o4 using (6.4), (8.1), (8.2),
and (8.4) in an iterative scheme similar to that described
in Appendix B. The ratio 0,/0, obtained in this way is
shown in Fig. 10 as a function of the order parameter S.
Note that in the limit S =1, the discoid case becomes for-
mally identical to the uniaxial pore, with the parameters
given in Table IV.

To uniquely determine S, and hence the other eight
quantities, we invoke the second constraint, which
amounts to a specification of the geometry of the
discoidal micelle. We consider two geometries: an oblate
spheroid and a hemitoroidal disk. (In the latter the ag-
gregate comprises a central cylindrical disk with a hemi-
toroidal edge.) For these geometries, o, and o4 are both
determined by the axial ratio p. For a hemitoroidal disk
of thickness 2b and diameter 2R +2b,

02/ O4

FIG. 10. Experimentally derived ratio of geometric parame-
ters for discoidal micelles vs the micelle order parameter S. The
shaded area represents the propagated random errors. The
dashed lines are theoretical bounds on o,/04 for specific
geometries (cf. text).
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_ (m/2)E+4 86
ST qermT2 o
o (3m/8)E+ 18 (&.6b)

CEErm+2 '

with £=p—1=R/b. For an oblate spheroid of major
and minor semiaxes a and b [54],

22_ ”__ 22
2 2
(11—
um Ut 5
with p=a /b and
p=1-+ 2recoship) (8.7¢)

pVp*—1

For both geometries, the lower bound on 0,/0, is 3, cor-
responding to the sphere limit. For the hemitoroidal disk
there is also a finite upper bound, restricting o,/0, to the
narrow range

220,/0,%%. (8.8)

Since o, and o, are both determined by p, we can now
attempt to find a solution, i.e., a set of values for the
seven parameters Jy.., X, 7o, T, T2, S, and p, that repro-
duces the six CFSD’s and the splitting. Such a solution
exists for the hemitoroidal disk, but not for the oblate
spheroid. For the hemitoroidal disk the results are given
in Table VIII. For the oblate geometry, the closest agree-
ment is obtained with S =1, where 0,/0,=1.48+0.06
(cf. Table IV and Fig. 10) corresponding to an axial ratio
p=1.9. With p=1.9, however, (8.7) yields values for the
individual o, and o, that are 50% larger than the experi-
mentally derived results in Table IV.

C. Complete spectral density calculation

The accuracy of the Lorentzian approximation (8.1)
can be checked by exactly calculating the spectral density
functions J G %(w) for surface diffusion on orientationally
disordered oblate spheroids [54]. Two examples of exact
dispersion curves are shown in Fig. 11. For p=2 the
Lorentzian approximation is highly accurate, whereas for

p=06 there is a pronounced deviation from a Lorentzian

TABLE VIII. Quantities derived from the quadrupole split-
ting and the nonadiabatic CFSD’s assuming hemitoroidal disks.

Quantity Value

Jie 871 13+9

x| (kHz) 13640

o, 0.21+0.05
o4 0.16£0.04
0,/0, 1.3240.01
7o (ns) 2.1+0.5
7, (ns) 1.8+0.6
7, (ns) 1.4+0.4
S 0.70+0.26
p 6.0+1.6
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FIG. 11. Frequency dispersion of the spectral density func-
tion J$%(w) for surface diffusion on oblate spheroids of the in-
dicated axial ratio p, S =1, and 7 =b2/D,=5 ns. The dashed
curves are Lorentzian dispersions, with the correlation time 7,
chosen so that J & (1/7,) =J§%(0) /2. The vertical lines indi-
cate the frequencies probed by the nonadiabatic CFSD’s.

dispersion at the frequencies w; and 2w; probed by the
nonadiabatic CFSD’s. (Similar results are obtained for
the spectral densities with symmetry index » =1 and 2,
and for order parameters S < 1.)

The failure of the oblate spheroid model in accounting
for the individual o, and o, values (Sec. VIII B) is thus
not due to a breakdown of the Lorentzian approximation
(8.1). This failure can be exhibited even more conclusive-
ly, without invoking the Lorentzian approximation, by
calculating the quantities

JS& ko) —JSq—TC (koy)
JG ko ) =I5 (koy)
_I& (ko) =T G (ko)

UG (ko) TG (koy)

Ay

(8.9)

which are independent of J,,. and ¥ and depends only on
the micelle order parameter S, the axial ratio p, and the
diffusional time constant 7, =b2/D,.

Figure 12 shows A; and A, as functions of p for 7, =5
ns and S =0.7 or 1.0. As the spherical (p=1) limit is ap-

0.4 T T T T T T T

0.2
Ag
0
0.2 ! | L L L . )
1 2 3 4 5
p

FIG. 12. Calculated spectral density difference ratios A,
(solid) and A, (dashed), defined by (8.9), for surface diffusion on
orientationally disordered oblate spheroids of axial ratio p and
orientational order parameter S. The diffusion time constant is
7,=b%/D;=5 ns.
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proached, A, becomes less dependent on 7, and S, with
the limiting value A, =1 being entirely independent of 7
and S. For any reasonable choice of 7, (1-10 ns) and S
(0.5-1.0), A, therefore does not exceed 0.4. From the
CFSD’s in Table III we obtain A;=A,=1.8+0.4 for
Jaq=0 and A;=1.210.4, A,=0.9%0.3 for a maximal
radial contribution (Appendix A) of J,,4=10 s~ L Tt is
therefore clear that the oblate spheroidal microstructure
can be excluded. (A similar analysis also rules out a mi-
crostructure of prolate spheroidal aggregate with the
symmetry axis isotropically distributed within the smec-
tic plane.)

For the hemitoroidal disk, we did arrive at an internal-
ly consistent solution in Sec. VIII B. It is clear from Fig.
11, however, that the Lorentzian approximation (8.1)
breaks down for an axial ratio as large as p=6. (This
conclusion should hold for disks as well as for oblates.)
Therefore, we must reject the results in Table VIII as ar-
tifacts of the Lorentzian approximation. Instead we ar-
gue that the A, curves in Fig. 12 should not depend
strongly on whether the micelle is an oblate spheroid or a
hemitoroidal disk. In particular, the p=1 limit of A, =1
must be the same and the decrease in A for large p
should remain. In view of the large experimental A,
values (cf. above), we therefore conclude that the relaxa-
tion data rule out a microstructure of water-continuous bi-
layers with discoidal micelles.

IX. DEFECT ENERGETICS

In the preceding analysis of spin-relaxation data, we
considered three topological types of bilayer defect:
pores, ribbons, and discoids. Defect geometries of the
first two types were found to be consistent with the relax-
ation data for certain values of the relative defect dimen-
sions. We shall now attempt to discriminate among these
structural alternatives on the basis of their relative stabil-
ity. To this end we adopt a phenomenological approach
where the dominant contribution to the free energy of de-
fect formation is identified with the curvature energy of
the amphiphilic monolayers. Despite its simplicity, this
approach usually provides at least a qualitative under-
standing of the relation between interface geometry and
energetics in lyotropic systems [68-71]. Other energy
contributions are briefly discussed in Sec. IX B.

A. Curvature energy

If the relevant interactions are of sufficiently short
range, the curvature energy can be expressed as the in-
tegral, over the monolayer surface, of a curvature energy
density g, (per unit area of monolayer) of the form
[68,72,73]

8e(x1,x)="1k(x;+x,)*+Rkxx, . 9.1)

These are the leading terms in an expansion in the curva-
ture deviations x; =c; —c.q, With ¢; and c, the principal
curvatures and ¢, the equilibrium curvature. In the ab-
sence of other constraints, the monolayer would thus

prefer a locally spherical geometry with €1 =€y =Ceq-
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(For simplicity and on physical grounds, we disregard the
possibility of having two unequal equilibrium curvatures
[73].) For the monolayer geometries to be considered, the
curvature deviations x; are not uniformly small com-
pared to the inverse monolayer thickness. The neglect of
higher-order terms [74] is justified by simplicity and the
hope that these contributions tend to cancel on average.
(Certain higher-order contributions involve the curvature
gradient [75], which diverges at points where flat and
curved surfaces are joined.)

The curvature-elastic moduli (with dimension of ener-
gy) in (9.1) are the splay elasticity (or bending rigidity) «
and the saddle-splay elasticity k. These moduli are sub-
ject to certain restrictions, which can be directly
displayed by expressing (9.1) as a canonical quadratic
form

8e(x 1, %) =12k +R) (x| +x,)?—1k(x,—x,)* . (9.2)

In order for the equilibrium state x; =x, =0 to be stable,
the quadratic form (9.2) must be positive definite and,
hence, must have positive eigenvalues, implying that

k>0, (9.3a)

—2k<Kk<0. (9.3b)

It is convenient to change the independent variables c;
and ¢, to the mean and Gaussian curvatures
H=(c;+c¢,)/2 and K =c,c,. Omitting a physically ir-
relevant constant term, we then obtain from (9.1)

8. (H,K)=2kH?—2(2k+K)c . H +KK . 9.4)

This expression contains three phenomenological param-
eters: k, Kk, and Ceg- They are usually obtained experi-
mentally, but can in principle be calculated from the
relevant microscopic interactions [69,76,77]. This choice
of parameters, however, is not unique. In fact, in the
traditional approach, due to Helfrich [68,72], the third
parameter is chosen as the spontaneous curvature c, re-
lated to the equilibrium curvature ¢, through
2+ 5
K

o= Ceq - 9.5)

We prefer to work with ¢, which has a direct geometri-
cal significance, rather than with the thermodynamic
quantity ¢, [70,73].

The Gaussian curvature term in the curvature energy
density (9.4) is usually omitted since, when integrated
over a closed simply connected surface, it reduces to a
constant that depends only on the topology of the sur-
face. This is a consequence of the Gauss-Bonnet theorem
[66], which implies that

JdA K =2mx =4m(1—g), 9.6)
with X the Euler-Poincaré characteristic of the surface
and g its genus [66]. Since the structural defects con-
sidered here alter the topology of the monolayer, the
Gaussian curvature term can play an important role.
Consider the contribution (9.6) to the curvature energy
obtained by integrating (9.4) over the total interfacial
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area A of a defective bilayer of indefinite lateral extent.
Discoids and ribbons (with closed ends) are topologically
equivalent to spheres (g =0), whence (9.6) yields 47N for
a bilayer containing N discoids or ribbons. A bilayer
(with closed edges) containing N pores has g =N, whence
(9.6) yields —4mN for N >>1.

Averaging (9.4) over a large patch of bilayer and using
(9.6), we obtain

1
(g.) —7fdA g.(H,K)

=2K(H2)—2(2K+E)ceq(H>i4m?—§, 9.7
with the minus sign pertaining to pores. If the ribbons
are sufficiently long, the area per defect A /N becomes so
large that the last term in (9.7) can be neglected. (This is
in keeping with the neglect of ribbon end effects in Sec.
VIIL.) The reference for the curvature energy density in
(9.4) and (9.7) is the classical bilayer, for which (g, )=0.

Using the relative dimensions of hemitoroidal pores
and elliptic ribbons, as obtained from the spin-relaxation
data (Secs. VI and VII), we can now calculate A4 /N,
(H), and (H?), reduced by the appropriate power of
the monolayer thickness b to make all quantities dimen-
sionless. Note that ( H) and (H?) are averaged over the
curved as well as the planar parts of the monolayer sur-
face. Since the relative dimensions obtained in Secs. VI
and VII refer to the Na™ diffusion surface, we convert
them to the hydrocarbon-water interface using a dis-
placement parameter 5=5 A (Sec. VIE). This interface
should be a better approximation to the neutral surface,
where the curvatures should properly be evaluated
[68,70,75,77]. (The neutral surface is the surface, within
the monolayer, whose area is invariant under bending.)
In order to compare the curvature energy of different mi-
crostructures, we assume that the monolayer thickness b
is the same in all cases (cf. Sec. IX B).

As seen from Table IX, the average mean curvature
(H ) is positive for both defect geometries, as in the near-
by Np, N¢, and H, phases. (Since a pore has principal
curvatures of opposite sign, { H) may be negative if the
pore diameter is sufficiently small compared to the bi-
layer thickness. For the hemitoroidal pore, { H ) <0 for
b/a>6.45)

According to (9.7), the relative stability of the three in-
terface geometries considered (pores, ribbons, and a clas-
sical bilayer) is determined by two dimensionless parame-
ters, which we choose as the reduced equilibrium curva-
ture c.qb, and the elasticity ratio ©/(2«). We thus con-

TABLE IX. Geometric quantities, related to the curvature
energy, for hemitoroidal pores and elliptic ribbons with relative
dimensions as determined from the spin-relaxation data.

Quantity Pore? Ribbon®
(H )b, 0.35 0.14
(H*)b} 0.23 0.04
+47Nb3/ A —0.33 0
23,=0.95.

*7=1.4 and p,=1.6.
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struct the stability diagram in Fig. 13. As seen from
(9.3), the elasticity ratio is confined to the range [—1,0].
The equilibrium curvature may be estimated from the
known interface geometry in the neighboring discotic
nematic (Np) phase (Fig. 1). We have previously con-
cluded, from a combined ?H and *Na spin-relaxation
study [45], that the N, phase (at a composition not too
far from the present L , sample) is composed of discoidal
micelles (modeled as oblate spheroids) of axial ratio 3—4,
corresponding to an average mean curvature {H )b, of
0.3-0.4. Assuming that (H ) ~c,, in the N}, phase and
noting that c., must decrease on addition of decanol (go-
ing from Np to L,), we may regard this value as an ap-
proximate upper bound on c.b, in our L, sample. The
conclusion from Fig. 13 is then that the ribbon geometry
can be stable relative to the classical bilayer if k= — 1. 3x,
while the pore geometry has a higher curvature energy
over the full K/(2«k) range. (The hemitoroidal disk with
p=06 would require c.4by> 1.7 to be stable.) A sufficient
condition for the classical bilayer to be stable is that ei-
ther ¢, =0 or k= —2«. This follows directly from (9.2)
and (9.3). (In the case K= —2k, any monolayer geometry
with ¢;7c, at some point has a higher curvature energy
than the classical bilayer.)

The stability diagram in Fig. 13 tells us which of the
considered geometries is the most stable one, but does not
say how stable it is. To say this we need to specify the in-
dividual elasticities k and K. For the L, phase of the
present lyotropic system, the bilayer bending rigidity «,
has recently been determined [78] to be k, =13%2 kT in
a sample of considerably higher decanol content
(Ngee/Ngps=2.55) than in our L, sample
(ng4e. /ngps =0.467). Since the bending rigidity is expect-
ed to increase on reducing the decanol content, a reason-
able estimate for our L, sample is k, =20 kzT. (At the
higher decanol content, the bilayer is probably classical
[79]. Whereas defects should reduce the macroscopic
splay modulus, we regard «k as a microscopic quantity.)

-1.0 -08 06 04 02 0
R/(2K)

FIG. 13. Stability diagram showing the microstructure of
lowest curvature energy for given values of the reduced equilib-
rium curvature c.qbo and the elasticity ratio /(2«). The rela-
tive dimensions of the ribbon and pore geometries are those
determined from the spin-relaxation data (displayed in Figs. 6
and 8). The shaded bands correspond to a stability margin of
+0.1 kz T per amphiphile, assuming k=10 kzT.
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To estimate the curvature energy g/! per amphiphile,
we multiply (g, in (9.7) by an average area 5, per am-
phiphile at the hydrocarbon-water interface. Taking
54=50 A? and k= K, /2=10 kgT, we calculate the re-
gions in the ¢, by, —K/(2«) plane where the curvature en-
ergy of two geometries differs by less than 0.1k T per
amphiphile. These are shown in Fig. 13 as shaded bands.
As long as c., >0, the ribbon geometry is never more
than 0.3ky T above the classical bilayer. In contrast, the
pore geometry is ~2kpT above the classical bilayer for

Ceq=0 or k=—2k. For c,4b,=0.3 and k/(2x)=—0.2,
the curvature energy of classical bilayer and pore is 0.3
and 1.3k, T (per amphiphile), above the ribbon.

B. Other contributions to defect energy

The curvature energy is not the only contribution to
the free energy of defect formation. In particular, one
should consider the role of interbilayer repulsion, which
is responsible for the stability of the L, phase. As recent-
ly emphasized by Bagdassarian et al. [80], this repulsion
tends to stabilize the classical bilayer against defects since
incorporation of water in the bilayer reduces the interbi-
layer separation, thus enhancing the repulsion.

In our L, sample, the interbilayer repulsion is essen-
tially of electrostatic origin. The electrostatic contribu-
tion, g.,, to the free-energy density (per unit area of
monolayer), is readily obtained from the Poisson-
Boltzmann potential (A6). Under the assumptions
specified in Appendix A, one obtains [81]

kgT
Ceslby)= 2 f db,Ap?, 9.8)
with 2b,, the thickness of the aqueous lamella, Ay the

Bjerrum length (7.14 A at 25°C), and Ap the Debye
length, obtained from (A7). In the strong-coupling limit,
where the Gouy-Chapman length Agc is much smaller
than b,,, we can set Ap, =2b,, /7 and (9.8) yields

Tk T
8Apb,

8es(by )= (9.9)
This strong-coupling approximation overestimates g.; by
a relative amount of order Agc/b,. Since Agc=1 A in
our case (and since we only consider energy differences),
the error is negligible.

As regards the electrostatic interbilayer repulsion, the
introduction of defects has two consequences. First, ad-
jacent bilayers are brought closer together, i.e., b, is re-
duced. Second, the effective surface charge density be-
comes nonuniform. The second effect is probably negligi-
ble since g, is independent of the charge density in the
strong-coupling limit.

The interbilayer separation 2b,,

d =2b,+2b,

is obtained from
(9.10)

with d =58.6 A the lamellar repeat distance (Sec. II B)
and 2b, the bilayer core thickness. For the hemitoroidal
pore, we obtained b, =11.6 A (Sec. VIE) and we use this
value also for the ribbon. The contribution to the free en-
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ergy of defect formation is
Ages :ges(bw )_ges(buc)l) ’

where bl refers to a classical bilayer. Assuming that b,

is the same in the absence of defects (cf. below), we can

obtain b¢! from (9.10) with d replaced by
__ d

T 7

9.11)

d

9.12)

with W, the volume fraction water, counterions, and
headgroups within the bilayer core. For the pore
geometry, we obtained W,=0.27 in Sec. VIE; this value
also applies to the other geometries since b, is taken to be
the same [cf. (6.17)].

Using (9.9)-(9.12), we obtain Ag. =0. O6kBT per am-
phiphile (with 5,=50 A? as in Sec. IX A). Despite the
40% reduction of the interbilayer separation, interbilayer
repulsion thus plays a minor role as compared to the cur-
vature energy. Referring to the stability diagram in Fig.
13, inclusion of g.; would shift the boundary between the
classical bilayer and ribbon domains by about 1 of the
width of the shaded band. (As long as b is the same, the
relative stability of the pore, ribbon, and disk geometries
is not affected at all.) However, as we move to lower wa-
ter contents in the L, phase, interbilayer repulsion (elec-
trostatic and hydration) will eventually dominate the free
energy of defect formation [79].

Besides the enhanced interbilayer repulsion, there
should be an additional electrostatic contribution to the
free energy of defect formation from the in-plane repul-
sion across the aqueous regions within the bilayer. Since
the in-plane surface separation 4, is not much different
from the interplane surface separation 2b,, we expect
this contribution to be considerably smaller than the cur-
vature energy. (For all three defect geometries, h
exceeds 20 A.)

The experimental value for the elasticity «, deduced
from x-ray-scattering studies of fluctuations in the long-
range translational order in the L, phase [78], also in-
cludes an electrostatic contribution «.. Recent theoreti-
cal work [63,64] shows that k. scales as b,, /A with the
proportionality constant estimated [64] to be 0.06k,T
(for the monolayer elasticity). While the electrostatic
contribution may dominate « for dilute L, samples, it
thus appears to be negligible for our sample
(kes=0.3kpT <<k=10kzT). We note, however, that
since the electrostatic repulsion in the present salt-free
system is long ranged, its curvature dependence cannot
be fully described by a renormalized elasticity. Hence,
the in-plane repulsion is not properly accounted for by
the curvature energy.

In the preceding discussion of defect energetics, we as-
sumed that defects were formed without altering the bi-
layer thickness 2b,. While a relatively small change in b
would not significantly affect our conclusions about the
curvature energy and the interbilayer repulsion, it might
produce a direct chain packing contribution to the free
energy of defect formation. However, mean-field calcula-
tions by Gruen [82] suggest that this contribution is mod-
est: the free-energy cost of varying b, within a range of 3

w
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A around the optimum is less than 0.1kzT for a Cy,
chain.

X. SPIN RELAXATION
AS A CURVATURE PROBE

As noted in the Introduction, a variety of experimental
techniques have been used to study structural defects in
L, phases. The spin-relaxation technique used here has
several important advantages. First, it is a curvature
probe: the existence of curved interfaces is unambiguously
established by the observation of a relaxation anisotropy.
Second, it directly reflects the length scale associated with
the curvature defects: the observation of a frequency
dependence (in the nonadiabatic spectral densities) clear-
ly excludes bilayer undulations and textural defects as the
origin of interface curvature. Third, the model-
independent information content exceeds that available by
other methods: apart from the quadrupole splitting,
there are six independent nonadiabatic crystal-frame
spectral densities (and more if the magnetic-field strength
is varied) that reflect the microstructure. Fourth, the re-
sults can be checked by studying the relaxation of
different interfacially confined nuclear species. Besides
the sodium counterions used here, the present system
could be studied via the *H relaxation of selectively deu-
terated SDS or decanol.

Previously, only static magnetic resonance (NMR and
ESR) experiments have been used to study bilayer de-
fects. Although the quadrupole splitting (or, more gen-
erally, the line shape) is a probe of interface curvature,
this information is not directly accessible since the resid-
ual quadrupole coupling constant is usually unknown [cf.
(4.8)]. Furthermore, the quadrupole splitting cannot dis-
tinguish between intrinsic structural defects and larger-
scale textural defects.

In analyzing the relaxation data, our aim has been to
proceed as far as possible without introducing specific
(geometric) model assumptions. Assuming a Lorentzian
shape for the crystal-frame spectral density functions, we
could thus determine the two geometric quantities o, and
o4 as well as two or three correlation times. The availa-
bility of two independent geometrical quantities, which is
a consequence of the fourth-rank tensorial character of
the spin-relaxation observables [46,47], severely restricts
the range of compatible microstructures and, in the case
of pores, allows us to determine separately the relative
size and density of defects.

Except for the case of oblate spheroids, we have not
made use of the full information content of the crystal-
frame spectral densities. More severe constraints on the
microstructure could be obtained by calculating the spec-
tral densities for various interface geometries; however,
the only nontrivial geometries for which such calcula-
tions have so far been carried out are the prolate and ob-
late spheroids [54] and the truncated catenoid (without
adjoining planar surface) [65]. At present, we can only
say that the correlation times of ~2 ns (Tables IV and
VII) deduced here (within the Lorentzian approximation)
are of the expected magnitude. For the Na* counterions
in the nearby H, phase, composed of circular cylinders,

we obtained [43] a correlation time of 2.5+0.2 ns. Com-
paring this to the result 7, =75=2.310.8 ns for the el-
liptic ribbon, we note that although the cross section is
noncircular, b is smaller than in the H, phase. The
Lorentzian approximation is admittedly a weakness in
our analysis, although, we believe, not a serious one. It
could be checked by performing accurate field-variable
relaxation measurements.

Another potential source of systematic error in our
analysis is the assumption of a laterally uniform coun-
terion distribution, which is required in order to reduce
the quantities o, and o4 to geometry. In the presence of
defects, the L , phase has a larger surface-to-volume ratio
than would otherwise be the case. For example, from the
results in Table V we can calculate that hemitoroidal
pores increase the total surface area by ~40%. This ex-
cess surface area is certainly not uniformly distributed.
Electrostatic considerations suggest a higher proportion
of SDS anions (and hence of counterions) in regions of
positive curvature [83], and this has also been inferred ex-
perimentally [35,84,85]. Since chain packing require-
ments tend to reduce the charge density in curved re-
gions, the net effect on the lateral counterion distribution
is probably small. Furthermore, the ratio o,/0, is not
affected by the overall partitioning of the counterions be-
tween planar and curved interface regions. The impor-
tance of lateral inhomogeneities could be directly as-
sessed by performing a spin-relaxation study on deuterat-
ed SDS and/or decanol.

A complication in counterion spin-relaxation studies of
microstructure is the contribution from ‘“radial” (normal
to the interface) diffusion. (This complication does not
arise for amphiphile nuclei.) As discussed in Appendix
A, radial diffusion contributes mainly to the crystal-
frame spectral densities with symmetry index » =0 and
the contribution should not exceed 10 s~ !. For the pore
and ribbon geometries, the effect on the derived quanti-
ties in Tables IV, VI, and VII of including this maximal
radial-diffusion contribution is as follows: ¥ is reduced
by 10%, J |, is increased by 10-20 %, o0,/0, is increased
by 10%, and the correlation times are increased by
10-25%. These effects are not sufficiently large to
significantly alter our conclusions.

The analysis of the relaxation data yields, besides
geometrical information, the local-motion spectral densi-
ty Ji.. and the magnitude of the residual quadrupole cou-
pling constant ¥. For the Na™ counterions in the nearby
H , phase, we obtained [43] J,,,=29+3 s ! and ¥ =81+6
kHz. The values deduced here (Tables IV, VI, and VII)
differ significantly from the H, results, but not unexpect-
edly so. (The differences are reduced if we allow for a
radial-diffusion contribution.) The differences are largest
for the disk geometry, although the uncertainties in J;,
and Y are large there.

As noted in Sec. IV, the three adiabatic crystal-frame
spectral densities contain information about the spectrum
of bilayer undulation modes. The undulation contribu-
tions can be obtained from the data in Table III by sub-
tracting J,,. and J5;%f(0). The latter can be calculated
from (6.1) in the case of pores, while for ribbons and disks
there are contributions from other slow motions (Secs.
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VII and VIII). For the pore geometry, we thus obtain
J&md(0)=105+t14 s~ 1, JGwd(0)=212+17 s~ ! and
J$5d(0)=32+11 s~ !. Theoretically, one expects [45]
for a uniaxial phase J§"™(0)=3J5"4(0) <J G (0).
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APPENDIX A: SPIN RELAXATION
BY COUNTERION DIFFUSION
ALONG THE BILAYER NORMAL

In a classical lamellar phase, counterion diffusion in-
duces spin relaxation by modulating the magnitude of the
local QCC Y. established by the local motions. Since
the classical bilayer is laterally homogeneous (on length
scales larger than a few angstroms), X),.(z) depends only
on the distance z of the counterion from the charged bi-
layer surface, i.e., only diffusion along the bilayer normal
can induce spin relaxation. Furthermore, since the classi-
cal bilayer is planar, the local EFG (averaged by the local
motions) must be uniaxial. Counterion diffusion can
therefore contribute only to the crystal-frame spectral
density function with symmetry index n =0 [59]. Since
the local EFG is short-ranged, being determined essen-
tially by the surface-induced asymmetry in the hydration
shell of the counterion and by (anisotropically distribut-
ed) ionic species in the immediate vicinity of the refer-
ence counterion [58], the components of the local EFG
tensor should vanish outside an interfacial layer of thick-
ness 8 of a few angstroms. Accordingly, we model the lo-
cal QCC x,..(z) as a step function, taking the value Y, in
the interfacial region (0 <z < &) and vanishing elsewhere
(8§<z<b,).

The contribution from “radial” (along the bilayer nor-
mal) counterion diffusion to the crystal-frame spectral
densities J§(kw; ) then takes the form [59]

J,Cad(kwL):vlezocP(l—P)fowdt cos(kwy 1)ga(t)
(A1)

where the numerical prefactor pertains to a spin-2 nu-
cleus such as 2*Na. The reduced time correlation func-
tion in (Al), defined so that g_,4(0)=1 and g 4()=0,
can be expressed as [59]

f dz,f (z)

x [ldzlf (tlz)=f (2], (AD)

grad( ) P(I—P)

where f(z,t|zy) is the counterion diffusion propagator
and f(z)=f(z,t — 0 |z,) is the equilibrium distribution.
In (A1) and (A2), P is the fraction counterions in the in-
terfacial layer (where the local QCC is nonzero), i.e.,

P=['d:f(2). (A3)

The propagator satisfies the Smoluchowski diffusion
equation [86—88]

D(2)f ()2 f(

82 Z,tlZo)/f(Z)]

2 _3
atf(z’t|z°)— oz

(A4)

where D(z) is the (possibly nonuniform) counterion
diffusion coefficient. The partial differential equation
(A4) should be solved subject to the initial condition
f(2,0z9)=8(z —z,) and reflecting boundary conditions
at the bilayer surface (z =0) and at the midplane (z =b,,)
of the aqueous region, i.e., a[f(z,tlzo )/
f(z2)]/9z=0atz=0and z =b,,.

The equilibrium distribution f(z) is related to the po-
tential of mean force w (z) (in units of k5 T') through

f(z)=exp[— /f dzexp[—w(z)] . (A5)

If the counterions are modeled as point charges immersed
in a dielectric continuum and the balancing interfacial
charge is represented by a uniform surface charge density
o, and if ion-ion correlations are neglected [89], w(z) is
simply the (reduced) mean electrostatic potential ob-
tained by solving the nonlinear Poisson-Boltzmann equa-
tion in the lamellar aqueous region [90],

w(z)=w(b,)+2In{cos[(b,—2z)/Ap]} . (A6)

The counterion Debye length A,, which always exceeds
2b,, /m, is obtained from the transcendental equation [90],

(b, /Ap)tan(b, /Ap)=b, /Agc , (A7)
with the Gouy-Chapman length

e

Age=—F"—,
GC 2W|U|k3

and the Bjerrum length

eZ

= A9
477606,.]{3 T ( )

From (A3), (A5), and (A6) one obtains for the fraction
counterions in the interfacial layer

P =1—cot(b,, /Ap)tan[(b,—8)/Ap] . (A10)

The adiabatic spectral den51ty J54(0) can actually be
calculated without solving the diffusion equation (A4).
The exact result is [91]

JEq(0)=7xE P(1—P (A11)

)Tre] >

with the characteristic time 7 for relaxation of the
counterion distribution given by

=1=P [lazsi ]
b

Trel P
P w
+1~Pf5 D(z f dzf(“}

Using (A5), (A6), and (A12), 7, can be calculated analyti-
cally if the diffusion coefficient is uniform in each region

)
f D(zf(z

(A12)
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[87]. (Since the resulting expression is rather long, we do
not reproduce it here.)

The Poisson-Boltzmann potential (A6) is one of the few
cases for which the Smoluchowski diffusion equation (A4)
admits an analytical solution [87]. Inserting this solution
into (A2) and carrying out the integrations in (A1) and
(A2), one obtains for the case of a uniform diffusion
coeflicient [59]

2
ISk )= Wz)(lzoc—ﬁZq cot(q)sec’(qg —r)

o '2(

sin“{lmmwr /q)

2+(kw, b2/D)*’

X (A13)

me1 [(mm)?—g?]

with g =b, /Ap and r =8/A ). In the adiabatic limit, the
infinite series in (A 13) can be summed exactly to give [59]

by (q)
JS,(0)= v cos(q
d X D [2gsin(g)cos(qg —r)]?

X { cos(g)—cos(g —2r)
+gq csc(g)[1—cos(2r)]+2r sin(g —2r)} .
(A14)

This result is also obtained from (A11) and (A12) with
D(z)=D

We now use (A13) to calculate the spectral densities

JC4(kw, ) for the investigated L, phase sample. From
the sample composition, molar volumes, and x-ray repeat
distance (Sec. II), we obtain (assuming classical bilayers)
an aqueous lamella thickness of 2b,=39.5 A and a sur-
face charge density of o= —0.28 Cm 2, For the Na™
diffusion coefficient D, we use the bulk value [92]
Dy=1.33%X10"? m?s~!. The local QCC Y, is obtained
from the residual QCC ¥={x,.(z)) =Px,. (Sec. IV).
For classical bilayers A, =1 in (4.8) so that the residual
QCC is simply twice the measured quadrupole splitting
vo(0.c=0), whence x,,,=64.56/P kHz. The thickness
8 of the anisotropic interfacial layer (where Y, is
nonzero) should be on the order of the surfactant head-
group size. With §=5 A and other parameters as
spemﬁed above, we obtain P =0.81 and J$,(0)=2.38

L JS(0,)=2.37 571, and JE (20, )=2.34 s~ '. The
near equality of the three spectral densities (extreme nar-
rowing limit) is a consequence of the fast relaxation of the
highly inhomogeneous counterion distribution (r,,,=0.25
ns) as compared to the Larmor frequency
(@[ T;es=0.04 << 1). Choosing instead §=3 A, we obtain
P =0.71 while the spectral densities increase by 20%.

Using (A11) and (A12), we can investigate the effect of
a reduced counterion mobility in the interfacial layer.
We have previously found, from spin-relaxation studies in
the nearby H, phase, that the Na™t surface diffusion
coefficient is a factor 3 smaller than DO [42,43]. Using
this value (and §=5 A) we obtain J$,(0)=3.45 s\,
(Since w; 7,,,=0.06 << 1, we remain in the extreme nar-
rowing limit.) As seen from Table III, even this value is
within the experimental uncertainty in the CFSD’s
JS(kw,). We thus conclude that counterion diffusion
along the bilayer normal does not contribute significantly
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to the CFSD’s provided that the bilayers are classical.

On the other hand, if the bilayers contain structural
defects, a small but significant contribution can be ex-
pected. Essentially, the effect of structural defects is to
scale up J$y(kw; ) by a factor (AQ)_z, where A4, is the
geometric factor appearing in (4.8). (The effects of re-
duced values for b, and o are compensating and, hence,
relatively unimportant.) These considerations suggest an
upper limit of ~10s~! for J$,4(0).

Since the A4, value is obtained from an analysis of the
CFSD’s JS (ko) with J$4(0) subtracted for n =0, the
analysis should really be carried out iteratively until self-
consistency. Using the analysis protocol of Sec. VI, we
find in this way ¥=101 kHz and J$,(0)=8.5 s 1. It
should be remembered, however, that our treatment of
JSqlkewy ) is still based on a classical bilayer geometry.
(As a consequence of interface curvature, there will also
be very small contributions from “‘radial” diffusion to the
CFSD’s with symmetry index n0.) Nevertheless, it is
of interest to estimate the effects of a maximum contribu-
tion from “radial” diffusion by repeating the analysis of
Secs. VI-VII with J§(kw;) reduced by J$,(0)=10
s~!. The results of this modified analysis are given in
Sec. X.

APPENDIX B: DATA TRANSFORMATION
FOR UNIAXITAL PORES

The data transformation described in Sec. VIB is a
mapping from the seven-dimensional data space

(v, IS (@ ), J & 20, ), TG (0, ),J 5120, ),J5H (0, ),T5 (2w,)}

onto the  seven-dimensional  parameter  space
{J10c>X>02,04,70,71,72}. There is no a priori guarantee that
this mapping exists. For example, if the spectral density
functions J$%(w) are distinctly non-Lorentzian, it may
be impossible to map the data onto a point in the physi-
cally admissible region of the parameter space. Further-
more, even if the mapping exists, there is no a priori
guarantee that it is unique, i.e., different parameter sets
may correspond to the same data set. We show here that
a unique mapping does in fact exist in the present case.

The data transformation is performed in the following
steps.

(i) Choose a value for J; . in the physically admissible
range [0,min{JS (ko )} ].

(ii) Calculate the three correlation times 7, from (6.1)

as
1/2
_ 1 an_l _ Jnc;l(wL)_Jloc
Thn = y Ay, = C ) (B1)
oL 4— &n Jnn ( 2C')L ) _Jloc
(iii) Calculate the ratios Sy=A,/ A, and B,= A,/ A4,

from (6.1) as

1+ (0, 7,215 (0 ) =T
Bn: Tl[ L 2][ nn L loc] (B2)
Tl 1+ (07?1 (@) Jloc]
(iv) Calculate the three amplitude factors 4, from (6.2)
as
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Ix! (kHz)
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from CFSDs

]loc (s l)

FIG. 14. Residual quadrupole coupling constant ¥, calculat-
ed from the quadrupole splitting and from the nonadiabatic
CFSD’s, vs the local-motion spectral density J,,., showing the
convergence of the iterative data transformation towards a
unique solution.

Gﬁz ’“/30

T agy TR

) Ag=ByA, . (B3)

(v) Calculate the two geometric parameters o,, from
(6.4) as

0,=2(A,+44,), g,=%4,. (B4)

(vi) Calculate the magnitude of the residual QCC from
the CFSD’s according to (6.1):

14+ (0, 71T & (@)~ Tie] '
|)_(_|:i [ 70) 1[I oo @p, oc J . (BS)
T ATy

(vii) Calculate the magnitude of the residual QCC from
the (non-negative) quadrupole splitting according to (4.8)
and (6.9):

2l
54 T30y - (B6)

(viii) Repeat steps (ii)—(vii) with a new value for J,
until the |¥| values calculated in steps (vi) and (vii) coin-
cide.

Figure 14 shows the effect of varying J,,. on |¥| as cal-
culated from (B5) or (B6). Since the smallest CFSD is
J$ 2w, )=28 s~! (Table III), we require that
0<J,,. <28 s~ !. However, values of J,,.>21.6 s~ ! lead
to physically inadmissible solutions (negative A,).
Within the physically admissible range of J,,. values,
there is just one solution: {J,,,=17.2 s~!, [¥|=110.6
kHz}. The mapping is thus unique.
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